

Notas de aula: http://www.dfn.if.usp.br/~suaide

LabFlex: http://www.dfn.if.usp.br/curso/LabFlex

Aula 5

Prof. Alexandre Suaide

Ramal: 7072

Ed. Oscar Sala (Pelletron), sala 246

Curva de potência de uma lâmpada: Algumas considerações...

Potência dissipada em uma lâmpada

Radiação + convecção:

$$P_{total} = C\Delta T^{\alpha} + K_1 T^{\beta} - K_2 T_0^{\beta}$$

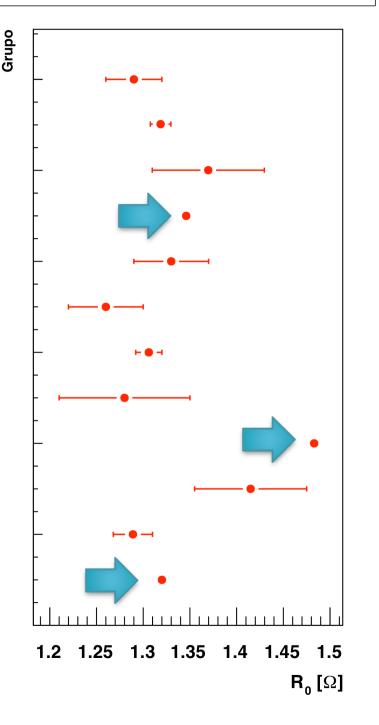
- Medida dos parâmetros C, K_1, K_2, α e β .
 - Para isso preciso saber R e R_0 da lâmpada para calcular a temperatura.

$$\frac{R}{R_0} = \left(\frac{T}{T_0}\right)^{1,24}$$

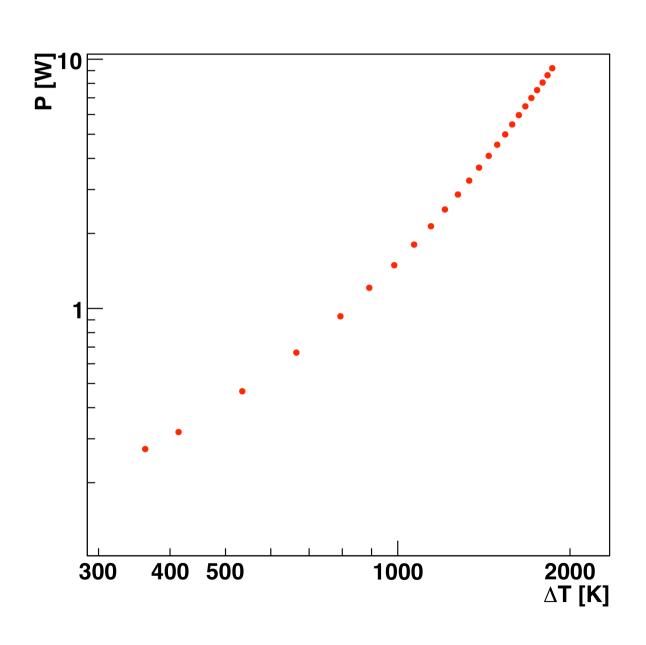
Medida de R₀

 Melhor método é o ajuste com correntes baixas

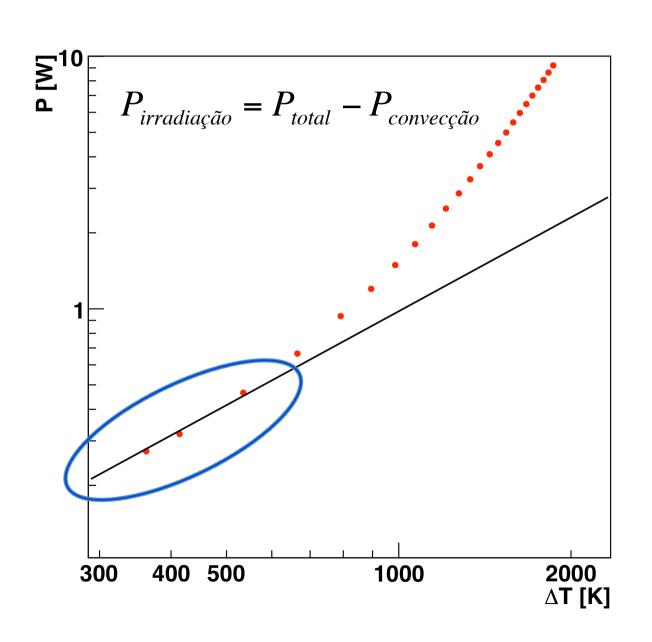
- A maioria dos valores são compatíveis entre si.
 - Praticamente mesma lâmpada



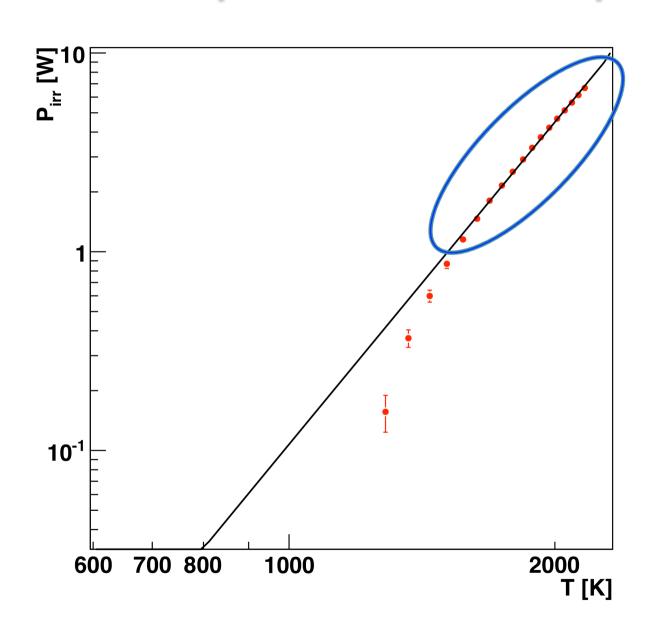
Curva de potência da lâmpada



Curva de potência da lâmpada



Curva de potência da lâmpada

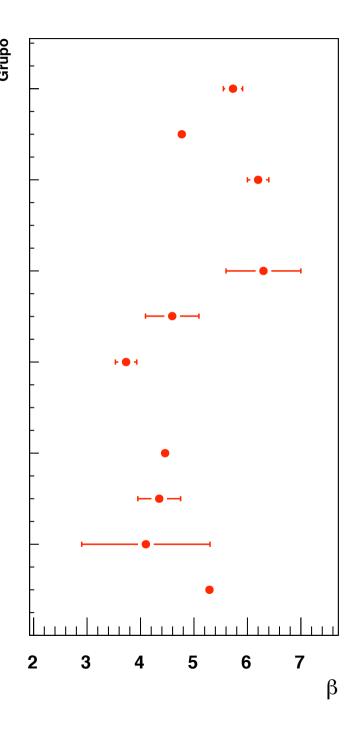


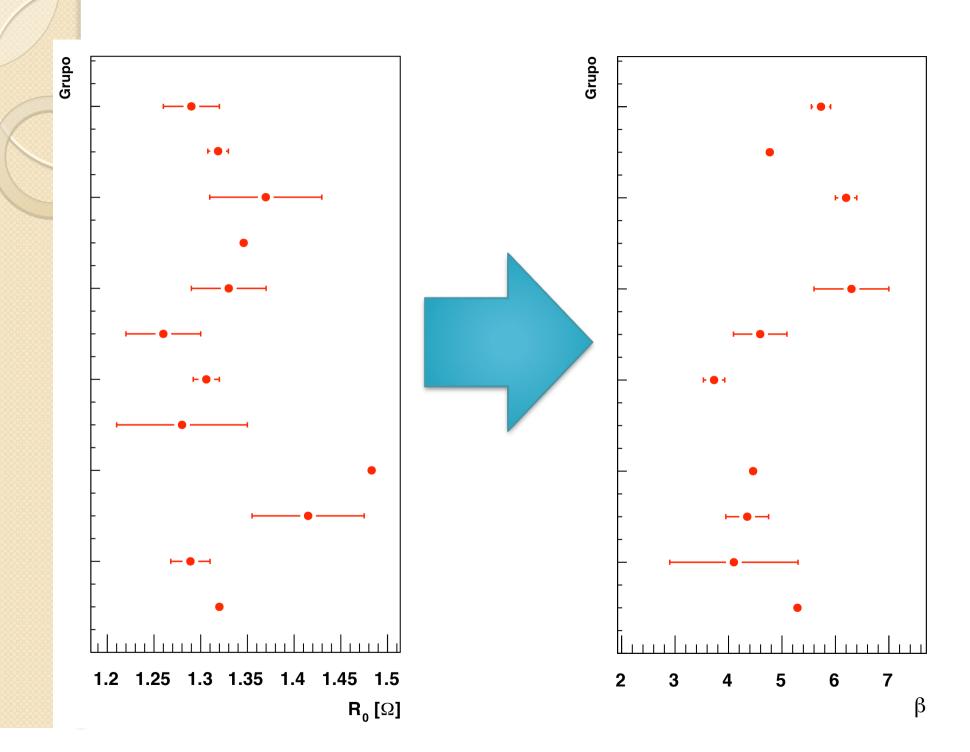
Medida de β

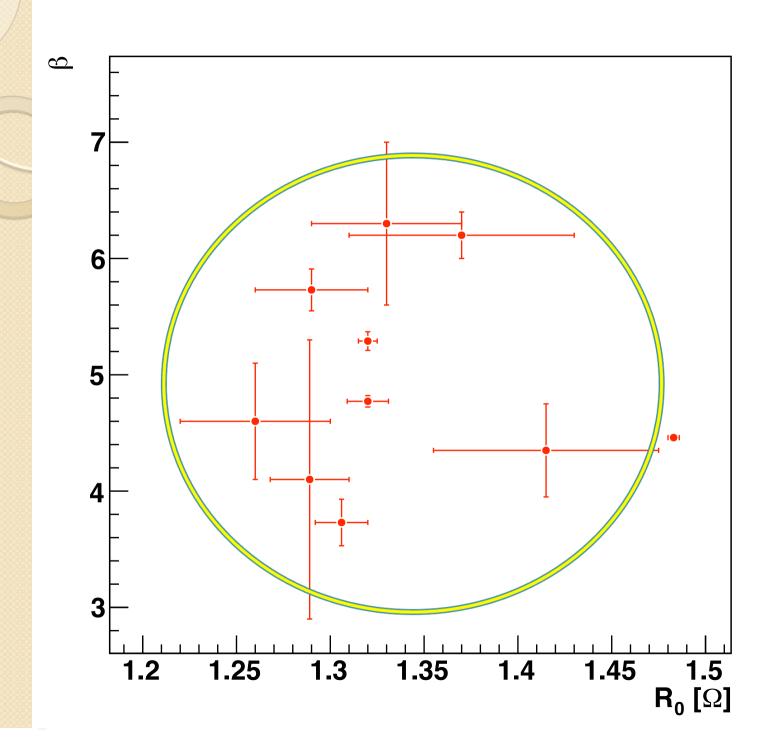
 Há muitos valores incompatíveis.

 Isso significa que a lâmpada não é a mesma?

 Qual a precisão real da medida?







Qual a precisão real da medida?

Qual a incerteza na temperatura?

$$T = T_0 \left(\frac{R}{R_0}\right)^{0.806} \Rightarrow \sigma_T = ?$$

Qual a incerteza na potência irradiada

$$P_{irradiação} = P_{total} - P_{convecção}$$

$$\sigma_{irradiação} = \sqrt{\sigma_{P_{total}}^2 + \sigma_{P_{convecção}}^2}$$

$$\sigma_{P_{convecção}} = ?$$

Incerteza na potência de convecção

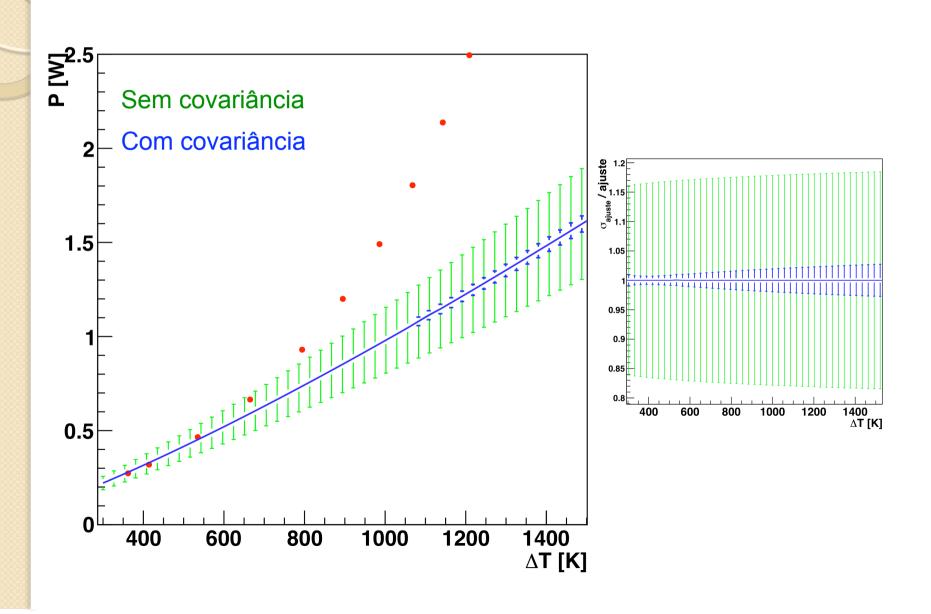
• Incerteza na potência?

$$P_{convecção} = P = Cx^{\alpha}$$

$$\sigma_P^2 = \left(\frac{\partial P}{\partial C}\sigma_C\right)^2 + \left(\frac{\partial P}{\partial \alpha}\sigma_\alpha\right)^2 + 2\frac{\partial P}{\partial C}\frac{\partial P}{\partial \alpha}\cos v_{\alpha-C}$$

 A covariância entre os dois parâmetros é importante na incerteza da potência?

Efeito da covariância na incerteza



Qual a precisão real da medida?

- Grande parte dos grupos não considerou que a temperatura possui incerteza
 - É significativo?
- Esses grupos também não consideraram a incerteza na potência de convecção quando a subtraíram da potência total
 - É bom contar com a sorte porque a covariância ajuda na direção de minimizar a incerteza do ajuste.
- Mas e o método? Como levar em consideração o método de análise na obtenção da incerteza?

Incertezas estatísticas e sistemáticas

- Incertezas estatísticas são aquelas que variam aleatoriamente com a medida.
- Incertezas sistemáticas são aquelas que estão relacionadas ao método empregado na medida e análise e não possuem caráter aleatório.
- É mais fácil caracterizar incertezas em tipo A e B
 - A aquelas avaliadas estatisticamente
 - B aquelas avaliadas de outra forma
- A incerteza de uma medida é a combinação dos dois tipos

$$\sigma^2 = \sigma_A^2 + \sigma_B^2$$

Incertezas devido ao método

- Qual a dependência dos coeficientes da convecção com os pontos que eu escolho para fazer o ajuste?
 - C e α mudam muito? É significativo? Como isso afeta a incerteza na potência de irradiação?

 Como os coeficientes de irradiação dependem da escolha dos pontos que eu faço o ajuste dos dados para irradiação?

Exemplo: incerteza em α

•
$$\alpha_{1-4} = 1,23 \pm 0,02$$

•
$$\alpha_{2-4} = 1.39 \pm 0.05$$

•
$$\alpha_{1-5} = 1.35 \pm 0.02$$

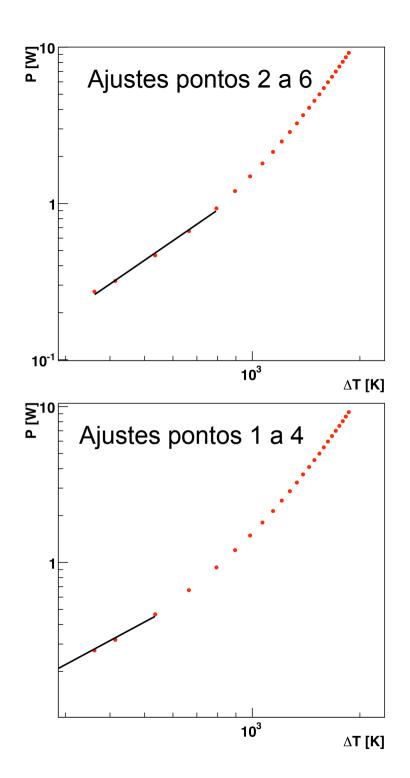
•
$$\alpha_{2-5} = 1,30 \pm 0,02$$

•
$$\alpha_{1-3} = 1,16 \pm 0,03$$

•
$$\alpha_{1-6} = 1,40 + 0,01$$

•
$$\alpha_{2-6} = 1,57 \pm 0,02$$

- Desvio padrão dos valores acima = 0,13
 - 5 vezes maior que a incerteza de um dos ajustes



Conclusões

 As conclusões de um resultado experimental (ou teórico) dependem fortemente de quanto a gente confia neles.

 Incertezas são tão importantes quanto as medidas efetuadas

 Exercitem avaliações de incertezas, tanto estatísticas quando sistemáticas

Espectro de emissão de uma lâmpada: Corpo negro ideal?

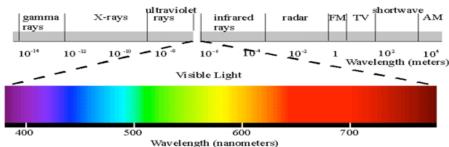
Espectro de emissão de luz da lâmpada

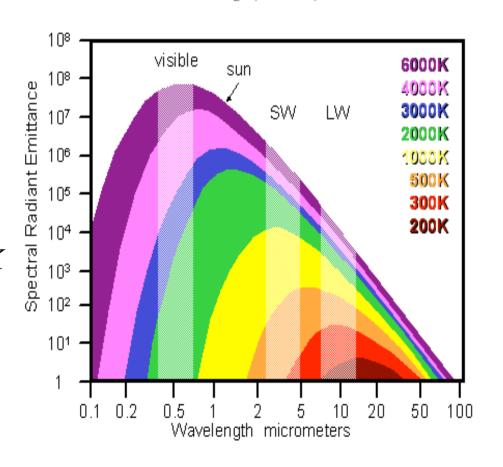
Corpo negro ideal

$$I(\lambda,T) = \frac{2hc^5}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

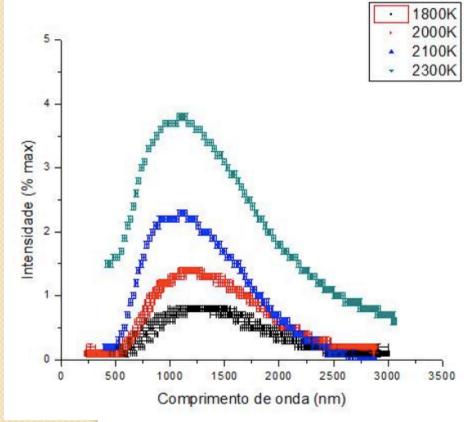
$$\lambda_{\text{max}} = \frac{b}{T},$$
 $b = 2,8977685(51) \times 10^{-3} \, m \cdot K$

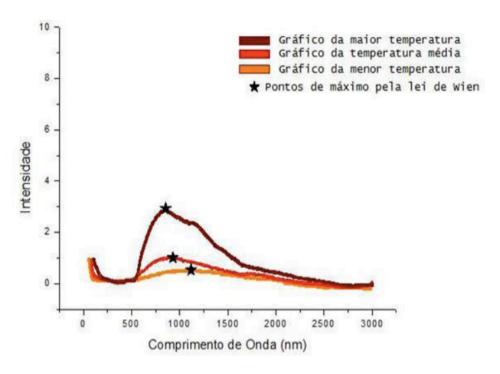
 A lâmpada é um corpo negro ideal?

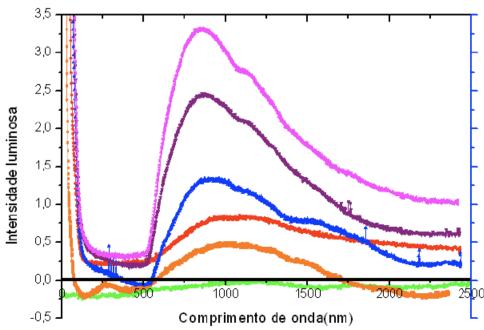




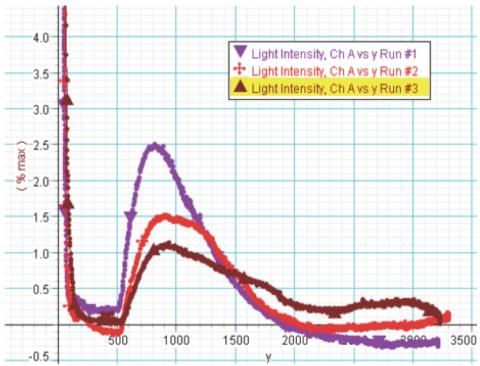
Espectros de emissão

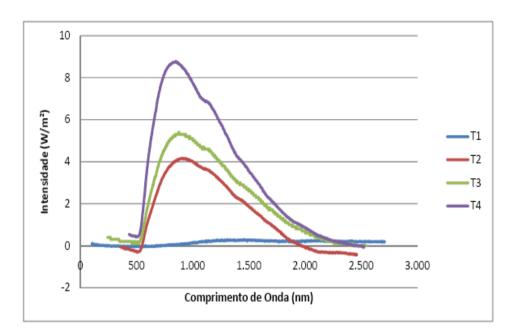


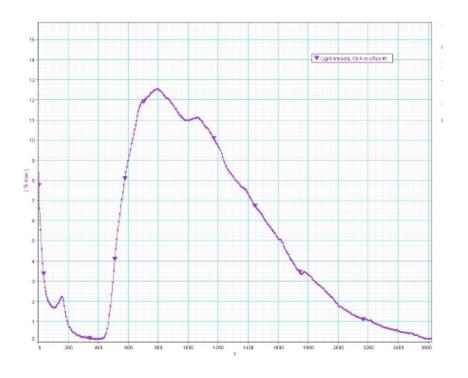




Espectros de emissão







Incertezas e fundo

15,0

14.0 -

13,5 -

1000 -

800

600

400

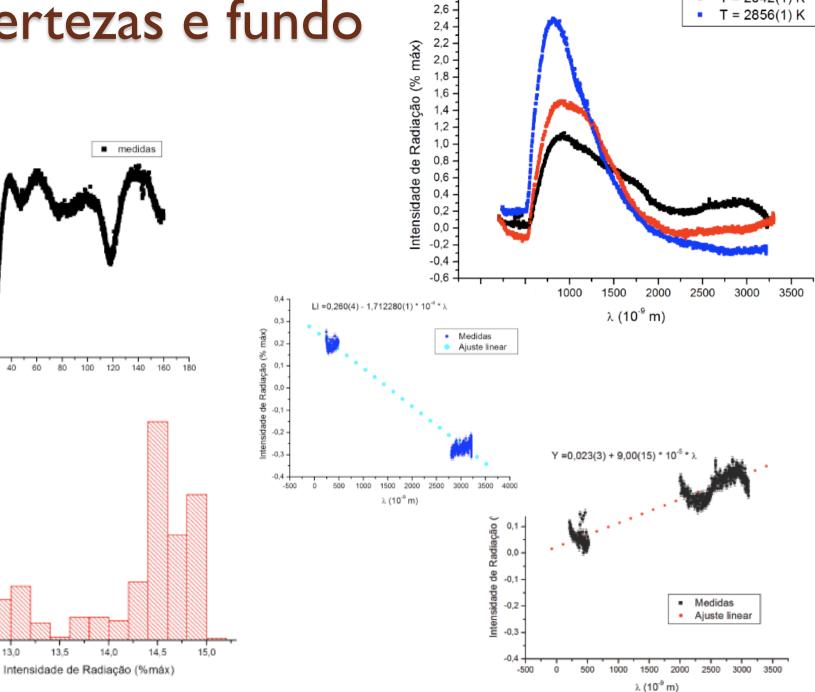
200

12,5

Quantidade de dados

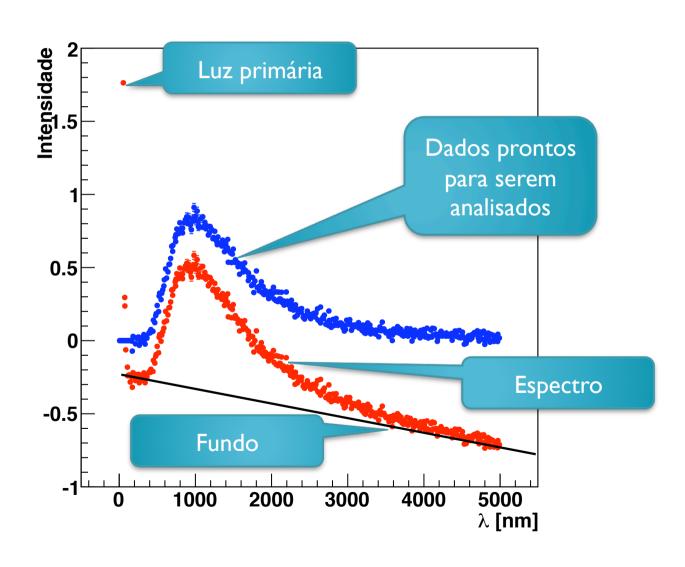
20

Intensidade de Radiação (% máx)



T = 1559(1) KT = 2042(1) K

O que medimos e o que analisamos?

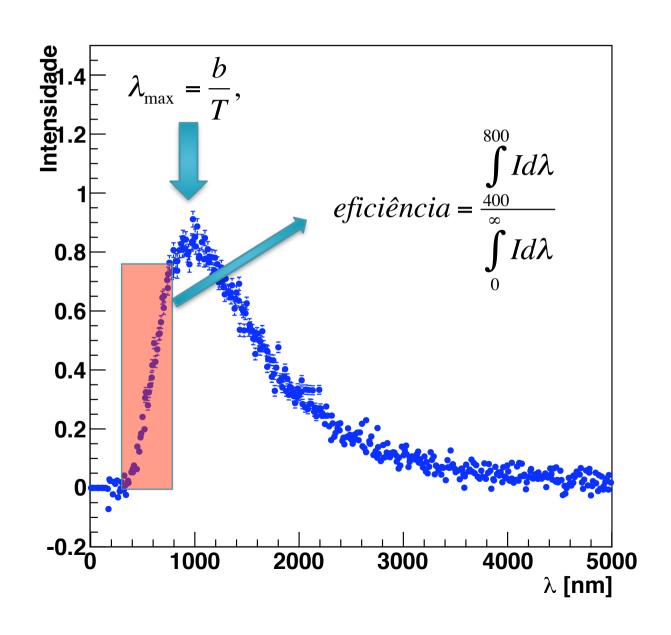


Temperatura e eficiência luminosa

 A temperatura espectral (Lei do deslocamento de Wien) é compatível com a temperatura medida a partir da curva característica?

- Qual é a eficiência luminosa da lâmpada?
 - A lâmpada é um bom iluminador?

Temperatura e eficiência luminosa



Resultados

- Em geral, todos mediram que a temperatura de Wien é sistematicamente maior que a temperatura obtida a partir da curva característica
 - Há uma diferença sistemática. Qual medida serve de base?
 - Porque há essa diferença?

Será que é o R0?

Medida	Comp. de Onda (nm)	$T_W(K)$	$T_{R1}(K)$
1	1277 (101)	2289 (185)	1800(42)
2	1183 (42)	2454(87)	2000(45)
3	1110 (16)	2611(38)	2100(42)
4	1110 (18)	2492(38)	2300(46)

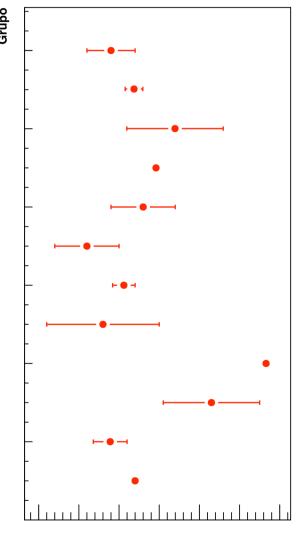
Tabela 1: Temperaturas cálculadas através da Lei de Wien (T_W) e através da resistência (T_{R1}) .

Medida	Comp. de Onda (nm)	$T_W(K)$	$T_{R2}(K)$
1	1277 (101)	2289 (185)	2252(189)
2	1183 (42)	2454(87)	2502(228)
3	1110 (16)	2611(38)	2627(240)
4	1110 (18)	2492(38)	2877(228)

Tabela 2: Temperaturas cálculadas através da Lei de Wien (T_W) e através da resistência (T_R) , considerando $R_0 = 1, 0(1)$.

Teremos portanto que agora T_W e T_{R2} são compatíveis, verificando, deste modo, que a lâmpada pode ser considerada um corpo negro na faixa de temperaturas em que foi analisada.

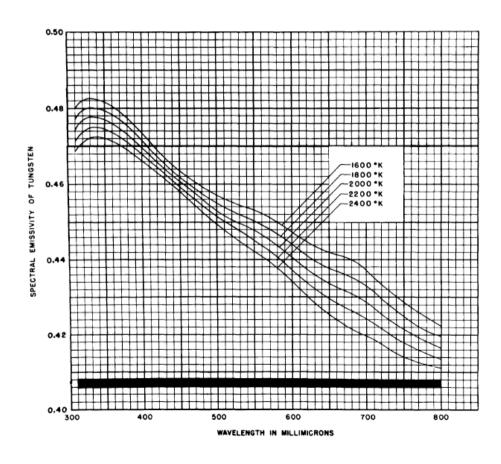
Outro fato importante que também foi notado diz respeito à incompatibilidade dos valores de T_W e T_{R1} . Tal fato ocorre pela imprecisão da medida de R_0 realizado na semana anterior. Se considerarmos $R_0 = 1, 0(1)^3$, teremos os seguintes valores para T_{R2} (tabela 2)



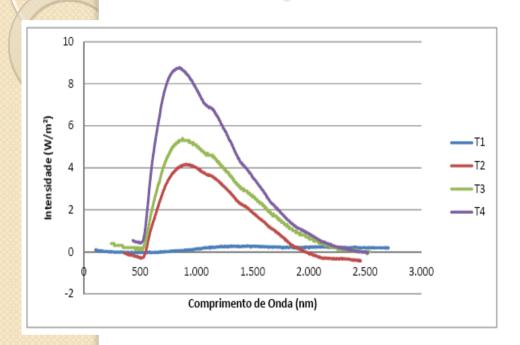
1.2 1.25 1.3 1.35 1.4 1.45 1.5 $R_0[\Omega]$

Emissividade do tungstênio?

 Como isso afeta a temperatura medida pela lei de deslocamento?



A lâmpada é um bom iluminador?



Cuidado com espectro de segunda ordem.
Como a intensidade depende de m² há, provavelmente, uma correção de 25% da integral total

T(K)	Eficiência (Visivel)	Eficiência (IR)
2343 ± 33	$9,13 \pm 0,46$	90 ± 5
2077 ± 28	$8,95 \pm 0,45$	81 ± 4
1727 ± 23	$2,73 \pm 0,14$	97 ± 5

Será que o sensor possui a mesma eficiência para todos comprimentos de onda?

Algumas conclusões (?)

- Há muitos efeitos que precisam ser considerados na medida
 - Fundo, luz primária, calibração, flutuação da medida etc.
 - A análise precisa ser feita considerando a existência desses efeitos
- A lâmpada é um corpo negro ideal?
 - Os dados das últimas semanas confirmam isso?
- A lâmpada é um bom iluminador?
 - Como levar em conta o arranjo experimental?

Síntese final para semana que vem

- Discuta o experimento como um todo, de forma sucinta
 - Não foram quatro experimentos independentes
 - Quais as conclusões globais do experimento
 - Sobre a lâmpada e pilha.
 - Como o procedimento de medida e análise influem nos seus resultados, desde a escolha do circuito até a medida do espectro
 - Como os seus dados corroboram para essas conclusões
 - Relacione os vários resultados obtidos

Síntese final para semana que vem

- Não precisa ser extensa (2-3 páginas)
 - Cite as outras sínteses. Os dados já estão lá
 - Incluam somente novos dados, se necessário

- Laboratório disponível semana que vem.
 - Refazer medidas
 - Ampliar medidas, etc.
 - Ajudar na preparação da apresentação oral...

Apresentação semana que vem

- O ponto principal é a comparação estatística entre os resultados de todos os grupos.
 - Por exemplo:
 - As pilhas são todas iguais? As lâmpadas são todas iguais?
 - Cada grupo mediu espectros em temperaturas diferentes. Será que não dá para juntar todos os dados e obter emissividade do tungstênio em função do comprimento de onda e temperatura?
- Discuta o experimento como um todo. Não pensem que fizeram 4 experimentos independentes.
- Qual a conclusão da sala sobre o experimento?
 - Não privilegiem medidas porque se aproximam melhor de uma conclusão desejada.

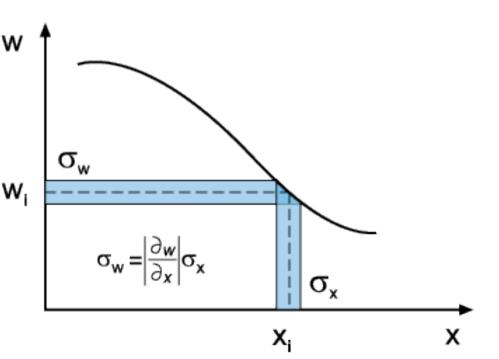
Propagação de incertezas: Método de Monte Carlo

Propagação de incertezas

 Fórmula geral de propagação de incertezas para incertezas pequenas e funções "bem comportadas".

$$\sigma^{2} = C^{T} \Sigma C = \sum_{i} \sum_{j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \Sigma_{ij}, \begin{cases} \sigma_{i}^{2} = \Sigma_{ii} \\ \text{cov}_{ij} = \Sigma_{ij} \end{cases}$$

 Como a variação de uma grandeza provoca variação em outra?



Propagar incertezas

- Se quero saber o quanto as incertezas de medidas afetam outras grandezas precisamos propagar as incertezas
- Em situações simples a avaliação é fácil

$$P = Vi$$

Mas como fazer em situações mais complexas?

$$I_{visível} = \int_{400}^{800} Id\lambda \quad \begin{cases} I = I \pm \sigma_{I} \\ \lambda = \lambda \pm \sigma_{\lambda} \end{cases} \Rightarrow \sigma_{I_{visível}} = ?$$

Simulações de Monte Carlo

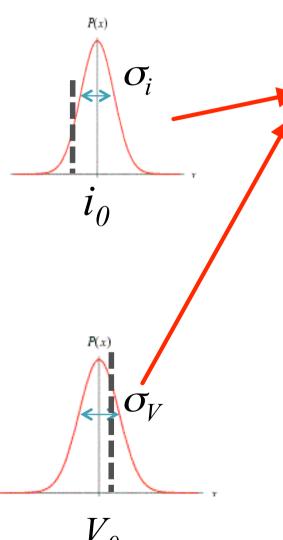
Caso simples,

$$P = Vi$$

•
$$i = i_0 \pm \sigma_i$$
; $V = V_0 \pm \sigma_V$

•
$$P = P_0 \pm \sigma_P$$
, quem é σ_P ?

P(x)



$$P = Vi$$
 P_0

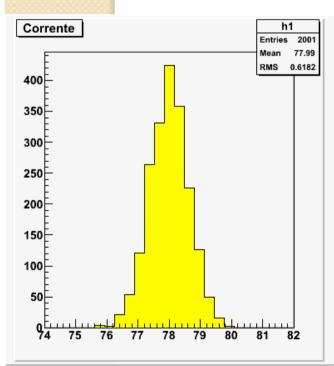
- Sorteia-se um valor para a primeira grandeza
- Sorteia-se um valor para a segunda grandeza
- Calcula-se a grandeza derivada com estes valores sorteados
- Repete-se o cálculo várias vezes
- A incerteza da grandeza derivada será o desvio padrão de todos os valores calculados

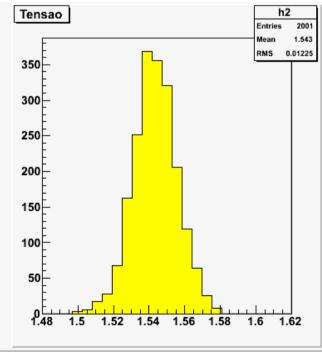
Exemplo: P = Vi

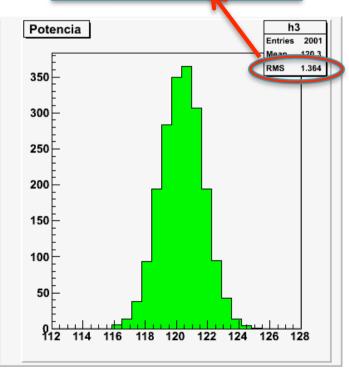
$$i = 78.0 \pm 0.6 \text{ mA}$$
 $V = 1.543 \pm 0.012 \text{ V}$

$$V = 1.543 \pm 0.012 V$$

$$P = Vi = 120.3 \pm ? mW$$







Cálculo no excel

 Para sortear um número aleatório, com distribuição Gaussiana no excel, dado

$$X = X_0 \pm \sigma_X$$

No excel usa-se a expressão

NORMINV(RAND(), média, sigma)

Ver planilha junto com as notas de aula

Vantagens deste método

- O conceito é bastante intuitivo.
- Fácil de implementar em planilhas eletrônicas (Excel, OO, etc.).
- Não é necessário fazer as derivadas parciais para propagar as incertezas.
- Independente da complexidade das contas, que podem tornar o cálculo de derivadas parciais muito complicados.
- Planilhas exemplos junto com notas de aula.