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Abstract. A simple relation for the Fermi function, correct to one per cent, is deduced using 
the tabulated values of Rose. 

The probability N ( p )  for the emission of a beta particle with momentum between p and 
p + dp per unit time is given (Fermi 1934) by 

N(p)dp=Cp2(Wo-  W)’ dp (1) 

where WO is the total energy of the electron corresponding to the end-point energy of the 
beta spectrum, W is the total energy corresponding to momentum p ,  and C is a constant. 
The energies and momenta are expressed in units of mc2 and mc respectively, where m is 
the rest mass of an electron and c is the speed of light. According to equation (1) the 
distribution is proportional to p 2  for small momenta, whereas for large momenta it is 
proportional to (WO - W)’. As the theory uses plane waves for the outgoing electron and 
neutrino, the effect of the Coulomb field on the emitted beta particle is neglected. But 
the Coulomb field of the daughter nucleus decelerates the negatron and accelerates the 
positron, thus altering the shape of the beta spectrum. The factor which accounts for the 
effect of the Coulomb field on the electron distribution is the Fermi function or Coulomb 
correction factor, F(2, W).  

Without considering screening of the nuclear charge by orbital electrons, the relativistic 
Coulomb correction factor is given (Fermi 1934) by 

where S = ( l  - a2Z2)1 /2 ,  p=R/(h/mc), R is the nuclear radius, p is the electron 
(positron) momentum, Z is the nuclear charge on the daughter nucleus, a is a fine structure 
constant and q= t Z e 2 / h V  where c.‘ is the speed of the beta particle far away from the 
nucleus and + (-) corresponds to an electron (positron). 

There are a number of tabulations of the Fermi function (Rose 1955, Dzhelepov and 
Zyrianova 1956, Bhalla and Rose 1960, 1961, Bhalla 1964, Buhring 1965, Bahcall 1966, 
Suslov 1967, Blin-Stoyle and Nair 1967, Behrens and Biihring 1968, Behrens and Janecke 
1969). All these calculations have used a uniform charge distribution for the nucleus. 
Furthermore, Behrens and Biihring (1972) have indicated that the assumption of a uniform 
charge distribution is perfectly satisfactory so long as the RMS radius is chosen correctly. 
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Several attempts have also been made to give simpler approximations to the Fermi 
function to make the calculations easy. If the electrons are treated as non-relativistic the 
correction factor is found to have the form (Mott and Massey 1933) 

F ( 2 ,  W) = 2ny/( 1 - exp( - 2x11)). (3) 

With this multiplying factor the electron distribution is found to be proportional t o p  rather 
than to p 2  for energies in the range 2x11 % 1. For low atomic numbers it is easy to see that 
equation (3) reduces to the form 

FCZ, W) 2: 1 + naZ W/p. (4) 

Hall (1950) suggested the following expression, which is found to have an accuracy 
within one percent: 

2s + S/6(S2 + q 2 ) ]  (5) 

where p =  tan-'(S/y). For Z=O this expression is found to give a value of 1.0046 instead 
of 1 for the Fermi function, indicating the error in the approximation. 

Nilsson (1956) has derived an expression with an error of one-half percent at most: 

W C 
F(Z, W)2: U - + 

P 1 +4P2  

where a = 2naZ, C= b - a,  b = U/( 1 - e-"), d=i(b  - 1) and CL is the fine structure constant. 
Another approximation for the Fermi function, which is valid for high values of 2, has 

been given by Bethe and Bacher (1936): 

F(z, W)=FN(Z. w)[W2(1 +4y2)-1]'  (7 )  

where FN(Z, W) is the non-relativistic expression given by equation (3), y =  aZ and 
S = (1 - a2Z2) ' /2  - 1. This approximation is accurate to about one percent for atomic 
numbers as large as Z = 84. 

While evaluating the integrated Fermi function in the allowed beta decay, Wilkinson 
(1970) has expanded the Fermi function in power series of aZ. Although this 
approximation gives an integrated Fermi function that agrees well with the exact function 
for high end-point energies, the deviation between the two increases systematically as the 
end-point energy decreases. Furthermore, it should be noted that the expansion coefficients 
are not simple functions of W andp. 

In addition to altering the shape of the beta spectrum the Fermi function plays an 
important role in the modification of the inner bremsstrahlung (IB) spectral distribution that 
accompanies beta decay. To a first-order approximation the Fermi function is replaced 
by 1 + naZW/p by Lewis and Ford (1956) in their IB theory. For allowed transitions they 
found that this factor does not significantly alter the correction to the KUB formula (Knipp 
and Uhlenbeck 1936, Bloch 1936) even when F(Z, W) and 1 + naZW/p differ from each 
other considerably. In order to achieve better accuracy in the calculation of the IB spectral 
distribution (Nilsson 1956, Ford and Martin 1969) and to provide an easy means for the 
construction of Fermi-Kurie plots we need a simpler but very accurate relation for the 
Coulomb factor. 

A modified Fermi function, given by G = Fp/ W, has been tabulated by Rose (1 955) for 
each atomic number over a wide range of momenta. This has been very important data for 
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the experimental physicist for the determination of the end-point energy from the measured 
beta spectral distribution (Evans 1955) and also for other calculations where the Fermi 
function is involved. 

The calculation of the Fermi function using equations (2) or (5) is tedious, and 
equations (6) and (7) are not simple either. Hence the need for greater dependence on the 
tabulated values. The same thing is true with regard to the integrals that appear in the 
evaluation of the IB spectral distribution and the integrated Fermi function. In the absence 
of a simple relation for F(Z, W )  for any specific electron momentum, the required value of 
the function is either interpolated from the tabulated values or calculated from the 
approximate expressions. Therefore, an attempt is made to obtain a simple relation for the 
calculation of the Fermi function for momenta p > 25 keV/c. 

A plot of the square of F (2 ,  W),  obtained from the tabulated values of the modified 
Fermi function, as a function of l/(W- 1) is found to be linear from 25 keV to the end- 
point energy for any isotope. Figure 1 shows some typical plots for /3 emitters such as 32 P, 
69Zn, 13’Cs and ’04Tl. Therefore one can write 

F(Z, W )  = [ A  + B/( W -  1)]1”. (8) 

The constants A and B, determined by a linear regression procedure, are given in table 1. 
A and B, however, become functions of the atomic number of the daughter nucleus. They 
are found to satisfy relations of the type 

A = 1 + a, exp(b,Z) (9 4 

B = a2 exp(bZ) (9b) 

where ao, bo, a and b are constants. It is found that the constants a and b have different 
values in the two regions Z <  56 and 2 > 56, whereas the constants a. and bo have the 
same values for Z >  16 as can be seen in figure 2. 

l / ( W - 1  1 

Figure 1. F2(Z,  W )  as a function of 1/( W -  1). 
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Table I .  Values o f A  and B of equation (8). 

EO Atomic no. 
Isotope (keV) ofdaughter  A B 

3500 
560 
158 

3200 
1390 
1730 

167 
713 
257 

200 I 
2140 
925 

1190 
1510 
546 

2274 
600 
292 
565 
393 

1173 
967 
430 
770 

1170 

3 
5 
7 
9 

12 
16 
17 
18 
21 
22 
23 
31 
33 
35 
39 
40 
41 
44 
46 
51 
56 
70 
75 
82 
84 

1.1578 
1.2985 
1.4864 
1.5606 
1.8275 
2.2243 
2.4496 
2.498 1 
2.9595 
3.0634 
3.2342 
5.0709 
5.7344 
6.448 1 
8.2372 
8.6994 
9.3330 

11.1489 
12.905 1 
17.8821 
25.2007 
69.6298 

106.2 196 
161.9399 
180.5666 

0.0208 
0.0391 
0.06 16 
0.1015 
0.1711 
0.3206 
0.3527 
0.4 128 
0.5895 
0.68 14 
0.7655 
1.8500 
2.2849 
2.8135 
4.2458 
4.71 16 
5.2025 
7.0753 
8.6289 

14.2645 
23.6665 

103.7297 
179.7 139 
403.5 75 3 
512.7254 

- 10-~ 
I ’  

lo-’ ; 

Z 

Figure 2. log(A -- 1) against Z and log(B/Z) against Z.  
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Using the values of A and B one can show from a linear regression that 

a=5.5465 x l o v 3  b= 76.929 x for Z < 5 6  

and 

a= 1.2277 x b= 101.22 x l o p 3  for Z > 56 

whereas 

a,, = 404.56 x 6, = 73.184 x l o p 3  for Z >  16. 

For Z < 16 the parameter A can be represented by a linear relation A = m Z  + K ,  where 
m = 7 . 3 0 x  lo-* andK=9.40x lo-’ .  

It can be seen that in the limit Z =  0 the values of A and B turn out to be 0.94 1 and 0, 
respectively. Hence from equation (8) we see that F(0, W )  = 0.970 instead of unity, which 
shows an error of 3%. 

For each isotope equation (8) is valid for momenta ranging from p=O.3 to pmax 
corresponding to the end-point energy. When the values of F ( Z ,  W )  are recalculated using 
equation (8), the tabulated values of Rose (1955) are reproduced within an error of one 
per cent. 

We conclude, therefore, that equation (8) is a simple relation that reproduces Fermi 
function values of Rose with a reasonable accuracy. Hence it can be used conveniently in 
the construction of the Fermi-Kurie plot, in the evaluation of the integrated Fermi function 
in a closed form and in the calculation of the IB spectral distribution to obtain better 
results. The IB spectral distributions of Lewis and Ford (1956), Ford and Martin (1969) 
and others, modified by the present simple expression for F ( Z ,  W ) ,  will be communicated 
shortly. 
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