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Because of this symmetry, it is clear that if ¢(x) is an eigenfunction,
then the function ¢(—=z) is also an eigenfunction. The eigenfunctions,
however, have been shown to be nondegenerate. Hence, these two fune-
tions must be linearly dependent i.e., there must exist a number C such

that the expression
¥(—z) = CY(x) (5-159)

is an identity in x. If the transformation 2 — —z is made once more in
Eq. (5-159), the result is '

W) = Ci(—2) = CR(a),

whence ¢ = 1, and
Y(—z) = :I:tP(w} (5-160)

Every eigenfunction for a bound state in a symmetric field [u(x) = u(-—z)] .

is therefore either an even or an odd function of x. This fact, which has
already been noted in connection with Egs. (5-109) and (5-110), is ex-
pressed by the statement that ¢(z) has a definite pardy. If ¢(—x) ==
¥(x), the parity of ¥ is even; if ¥(x) = —y(—=x), it is odd.

" If the system under study is invariant to the transformation z — —=z,
then conclusions as to the energy levels, ete., eannot be influenced by the
choiee of which of the two directions along a_: is to be positive. In other
words, if no feature of the environment of the particle, as expressed in the
_ function V(z), specifies a particular direetion, then the eigenfunctions of
pondegenerate states have a definite parity.

That these simple considerations are not trivial is apparent from the
fact that the result ?”+1) = 0 can be deduced immediately from parity
considerations, without reference to the explicit form of . In more complex
situations, the concept of parity is of fundamental importance for the
classifieation of quantum states.

5-13 The Wentzel-Kramers-Brillouin approximation. Ounly a few prob-
lems in quantum mechanics can be solved exactly, and approximation
methods are therefore of great practical importance. We shall conclude
this chapter on one-dimensional problems with a discussion of an approxi-
mate treatment, due to Wentzel, Kramers, and Brillouin.'"t This ap-
proach, commonly known as the WKB method, is also called the classical
approximation, since it deals with situations in which # is small compared

1. Wentzel, Z. Physik 38, 518 (1926); H. A. Kramers, Z. Physik 39, 828 .

{1926} ; L. Bnllomn, Comgpt. rend. 183, 24 (1926) and J. phys et radium 7, 363
(1926); R. E. Langer, Phys. Rev. 51, 669 (1937}.
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to the action. The method leads to a quantization rule which is essentially

the same as that of Wilson and Somamerfeld (Section 1-12).
The one-dimensional Schridinger equation,

d’
LYy

can be written in the form

d—‘f L1 1.'/ =0, (5-161)

2,

7

where p is the classical momentum at the point «:

p = V2mlE — V(z)]. (5-162)

If the energy is high enough so that the wave length A = h/p is very short

in the classical region, compared 4t0_\the extent of this region, and if the

potential function changes smoothly, then the “ndex of refraction” for

the waves varies slowly. In the discussion of geometrical optics in Section

4-2, it hag been shown that, under these circumstanees, the wave function
can be approximated by

@) — 6@ exp [i z f po) dx], (5-163)

where #(x) is a slowly varying function [Eq. (4-12)]. This is the basis for
the WKB method. _

By . straightforward substitution of the approximate solution (5-163)
into the Schridinger equation (5-161), the differential equation for the
function ¢(x) is obtained:

hode (dqs 1'dp')_
Ewd: 2d$ 5@(}5 = 0, | (5—164:.) |

It is assumed that %/p is small, compared to the other dimensions of the
problem, and that ¢ varies slowly. Hence, we neglect the first term in
Eq. (5-164) and obtain ' -

2de  ldp_ d 200 — 0. -
s+ p 4z = In (¢"p) = 0, (5-165)
which yields | _ . .
¢ = Kp~'? (K = a constant). (5-166)
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The approximate wave function is therefore

dwis = Kp~ V% exp (ﬂ: %/ P dx)- (5-167)

The classical approximation is expected to hold in regions where the
fractional change in p in one wavelength is small, that is, where

pA
P

The WKB approximation is valid under similar conditions: ywxs satisfies
the differential equation

« 1. ' (5-168)

_ %
=5

Helm-av-
e Tl 9y =0 (5-169)
where
=3 g.) _ }
Qm4(p 9 (5-170)
and Eq. (5-169) is an approximation to Eq. (5-161) if
. 2
9l < %5
or ‘ : _
#
—% 1 — 3pp"/p'?) K 1. (5—171)

In nearly all practical cases, thls condltlon is equwalent to (5—168)
The condition will, in general, be fulfilled for problems where the mass i
large, the energy hlgh and the potential smooth. However, it is. clear
that the WKB solutions cannot be valid near a classmal turning. point,
where the momentum is zero.

We shall now congider the problem of finding the wave function for a
particle in a given potential well. Let V(z) have the form shown in Fig.

5-21. Inregion 1, the wave function decreases exponentially for x —> — o,
and since p is 1mag1na,ry Vi) > E), ¢is apprommated by

¥ = Kilp|~ ”2exp( f |p|dx) . (5;_1725

In region 2, ¥ is oscillatory:

b= ke (L[ o) o ke (<2 [ 5)-

(5-173)
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Fiz. 5-21. Potential well for discussion of the WKB appro:{imétion.

In region 3, the wave function decreases exponentially for z — 0

Y3 = Ks|p| "% exp (— 1[ |p] d:v) (5-174)

" The regions of validity for these forms of the wave function are separated
by the classieal turning points, near which the approximation fails. How-
ever, since ¥y, ¥s, and ¥3 are all approximations to the same function
¥, the constants K;, Ka, K;, and K3 cannot all be arbitrary. In order
to evaluate the constants and to connect the approximate solutions in the °
three regions, we assume that the potential energy function is approxi-
mately linear in the neighborhood of z, and z,. Thus, at z;, we write

_ Vig) = E — A(z — =), (5-175)
and at x5,
V{x)

2

E - Blx — z3). (5-176)

In the neighborhood of z, the Schrodinger equation (5-161) then becomes

d* | 2mA :
| dx'é’ + ;’; (# — z¢ =0, (5-177)
and near zs, .
- d%  2mB : '
.d_x.‘g — 2 (e — @y = 0. S (5-178)

In Eq. (5-177), we now change the variable fo

e (A" o ), 5-179)

and obtain

2
’jlz—‘f T (5-180)
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Similarly, the substitution

. 113 : ‘
z = (g%ﬁ) (x — x2) (5-181)

reduces Bq. (5-178) to the same form (5-180).

The solutions of the differential equation (5-180} are the Asry func-
tions.'! We réquire a function which vanishes asymptotically for large
positive z (z > 0 corresponds to © < x; and x > x3). Such a function is

Ailz) = 1 [w cos (iei + sz) ds : (5-182)
we) = | 5 . \
which, for large ||, has the asymptotic forms
Ai(z) ~ w—_l—exp (—2:%'%) {z > 0), (5w183)
2v/m 2114
Ai(z) ~ —Lw—éin [%(—z)“ 2+ ’—r] (z < 0). (5-184)
Vi (=) 4

[See T1g 5-22 for a graph of AZ(z)}
If the energy F is large enough, the regions of validity of the linear
approximations (5-175) and (5-176) contain many wavelengths. The

N\
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Fic. 5-22. The Airy function Ai(z) = (1/7) [y cos (s3/3 -+ s2) ds.

LH. and B. 8. Jeffreys, Methods of Mathematical Physics. Cambridge:
Cambridge University Press, 1956, 3rd ed., Section 17.07. J. C. P, Miller, Tke
Airy Integral (British Association for the Advancement of Science, Mathe-
matical Tables, Part-Volume B). Cambridge: Cambridge University Press, 1946.
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function Ai(z), which passes smoothly through the turning point, provides
the required connections among the approximate forms (5-172), (5-173),
and (5-174).

In the neighborhood of xq, we have

~ ImA(z — 1) = —(2mAK)* %,
and

%f ;-pl de = (2mA)1"3f Vzdz = _f Vads = —3%2 (5 185).

Similarly,

1[ pdm:(gng) f\/_de_L_[ V—zdz = 2(—2)¥%,

and comparison with Fgs. (5-183) and (5-184) shows that the function
approximated to the left of z; by

=~ |p|="/% exp (1f [ dt) (x < =) (5-186)
has, on the right, the approximation
S o 2p—~1f2 sin (%_/ pde + %—) (x > z1). (5—187)
1 .

A similar analysis in the neighborhood of point , shows that the function
approximated to the right of x4 by

s = lp|7"? exp (—%f ip| dx) (x > x2),  (5-188)

is approximated in region 2 by

‘ z
¢ = 2p~ " H2gin (%[ pdr + %) T @ < @), {5-189)

The functions (5-187) and (5-189) are the continuations, into the classical
region, of the functions (5-186) and (5-188}, respectively;, which have
the proper behavior at # = +w. Now if ¢, and ¥3 are approximations
to the same eigenfunction ¢, they must be the same except perhaps for
a constant multiplier:

x ) . B B
. {1 L T T = Tan
sin (ﬁ fz, pdx + 7{) = ('sin (rh"/m pdzr + 2) . (5-190)
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A ul2)
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Fia. 5-23.  WKDB approximation to the harmonic-oscillator wave function
in the state n = 4. To the accuracy of the graph, the WKB wave function
(heavy line) coincides with the exact wave function (broken line) in the interior
of the well. Near the classical turning point zz = 3, the WKB approximation
breaks down. The Airy function (light line) coincides with the exact wave
function at xz and conneets the WKB approximations in the classical and non-
classical regions. At small and large z, the Airy funetion deviates from the
exact wave function. ’
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Setting f7 = [;* — f;* we require that the expression

1 [ 1[“ 1r)_ .(1]’” 7r) -
sm(%fml pdme B deE-I—Z = (' gin i), pdx—|~z ;

be an identity in z. This condition is satisfied only if

xp )
flb f pde = (n+ 31  (nan integer); (5-191)
Sl .

the constant (' is then equal to (—1)™

The (unnormalized) WKB approximation to the bound-state wave
function is therefore

r'(—)“ipl“”zexp (—%[:l i dx) (& < 21),

o1z (1 [
Ywrs = | (—)"2p % sin (ﬁ/ Pdw-l-%r) (z; <z < 29),
1

Llplﬂlm exp (— %_/;2 |p| d:v) (2 < 2). (5-192)

(Note that the-spproximate wave function for the nth bound state has
n -+ 1 zeros.)

The WKB approximation to the state ¢ for the harmonic oscillator is
compared to the correct wave function in Fig. 5-23.

The condition (5-191) can be written

551) de = (n -+ 3Hh. (5-193)

The symbol & denotes the integral taken over a complete cycle of the
clagsical motion, i.e., the area included by the path of the representative
point in the p-z plane. This is the Wilson-Sommerfeld condition {Eq.
(143}, except that » is replaced by n + 1/2.. Since the classical approxi-
mation is réliable only when n is large, this modification is not of great
significance. '

5-14 Penetration of a potential barrier; WKB approximation. The
penetration of a square potential barrier has been discussed in Section
5-2. For a barrier of more complicated shape, the Schrédinger equation
cannot usually be solved exactly, and the WKB approximation is often
suited for the problem. The wave function is oscillatory outside the
barrier and has exponential character in the nonclassical region. In the
approximate wave functions (5-192), the exponentially increasing solution
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in the nonclassical region was discarded because it violates the boundary
conditions for ¢ at oo, In the present case, however, the nonclassical
region is of finite width, and both exponential solutionis must be included.
We require therefore a second connection formula.

We use the second solution of the differential equation (5- 180), which is
the Airy function

o) 3 3
Bi(z) = % fu [e'_”_(” B 1 gin (§3~ + sz)] ds, (5-194)

with the asymptotic forms

. 1 '
Bi(z) ~ \/——”;exp (&) (z > 0), (5-195)

Bi(z) ~ ~-————cos [%(—2)3’2 +’{;’] (z < 0). (5-196)

\/_(__3)1,'4

An argument which follows the same lines as that of the preceding section
Jeads to the connection formula linking an increasing exponential solution
'in region 1 to an oscillatory solution in'region 2 (Fig. 5-24):

&1
- 1
|p| 7% exp (g[x id da:) @ < @),

—1iz oo (1 T
P cos(hfxl'pdx + 4) {x > x1).

A potential barrier of arbitrary shape is indicated in Fig. 5-25. We
assume that a beam of particles is incident from the left. In region 3, the
wave function for the transmitted particles is of the form

Ywrs =

Yy = ApH/? expi(?];f p dx - %—) . (x > z2), (5-198)
E .

where the phase factor e"/* has been included to facilitate the application
of Eq. (5-197). In terms of trigonometric functions, ¥z ean be written

Ys = Ap‘”z'[cos (% f pdz - %) + isin(% f pde + -E)] (5-199)

The connecting wave function of exponential type in region 2 is obtained
by comparison with Eqs. (5-197) and (5-192):

vo = Ao~ o (L [ tplaz) + S (-1 [ wias)|- 200

(5-197)
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Fia. 5-24. Potential near the classi- Fie. 5-25. Potential barrier.
cal turning point %1 at the edge of a
barrier.

In order to find the appropriate wave function in region 1, we rewrite
the integrals in the last expression, using (see Fig. 5-25)

z2 Tz x*
f lp| dz = [ [p| dz — f Ip| dz,
&£ 1 xy1.

and introducing the deﬁnition.

T — exp (— % [I VoV = B) dx), (5-201)

so that Eq. (5-200} becomes

¥p = Aipl‘”z[ﬂ”‘1 exp( !pl dw)+ Texp( f |p dx)]

(5-202)

By comparison with Eqs. (5-192) and (5-197), the connectmg oscillatory
wave function in region 1 is now seen to be

T . xy
Yy = Ap [21’ sm(h . pdx—!—4 —|—2Tcos 7). pdx—iw-i .

(5-203)
1t is convenient to rewrite this expression in terms of exponentials: '

= i I(T“1 37) exp [z (% f:i p de - %)]
— (T~ + 1T) exp [-_z' (% [m 3 pdz + g)]} (5-204)

¥
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The first term in the braces is recognized as a wave moving to the left, and
hence represents the reflected wave, while the second term represents the
incoming wave, which moves to the right.

The constant 4 can be adjusted for unit incoming eurrent, so that the
absolute magnitude of the amplitude of the incoming wave is 72, Then

vm

A==

With this value for A, the amplitude of the reflected Wave has the magni-
tude

—i2 1 — T2/4_ .
v T¥ 72/ {(5-2086)
The transmitted wave [Eq. (5-198)] has the amplit_udé
Ap_l"g = p— 12 _T (5-207)
1+ T2/4

The reflection coefficient R is defined as the ratio of reflected to incident
wave amplitudes: - :
1 — T?%/4
|R| == T T2 {5-208)
The square of the reflection coefficient is equal to the fraction of the inci-
dent eurrent that is reflected.
The transmission coefficient is the ratio of transmitted to incident wave

amplitudes:

T ‘
|TI'H.I]S. eoeff.l = m - (5—209)

Tt-is consistent with the error of the WKB approximation to neglect
powers of 7' higher than the first, so that

T2
|Trans. coeff.| = 1" = exp {#%f Vom[Viz) — E]dx] (T« 1).
1 ”
(5-210)
To the same approximation,

R = 1 — T2 (5-211)

As an example of the application of Eq. (5-210) for the transmission
coefficient, let us consider the cold emission of electrons from a metal. In
the absence of an external electric field, the electrons are bound by a po-

(5-205)
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Fie. 5-26. Potential for electrons in a metal. () No exterpal field. (b) With
external field &.

tential, as shown in Fig. 5-26(a). The lower levels in the well are filled,
according to the Pauli exclusion prineiple (Chapter 12). The work function
W is the energy required to remove an electron from the highest occupied
state.

When an external electric feld & is applied to the metal, the potential
at the surface takes the form indicated in Fig. 5-26(b). Now the potential
barrier has a finite width, and electrons are able to escape. The variation
of cold emission with work function and applied field is easily obtained
from Hq. (5-210). Weset #; = 0, and find x5 as follows [ef. Fig. 5-26(b)]:

V0—€8$2= VO—W

vy = .

27 8
Also, _
. V—E=Vy—etz—E=W — etur.
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The transmission probability therefore is

7% — exp (—%[ N U dx)

5 Wieh '
= exp (— 7/, AV 2m(W —e &x) da:)

)
N 3/2
— (-4, (5-212)

This expression is in qualitative agreement with experiment.
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ProBLEMS

5-1. Discuss the function ¢z [Eg. (5-15)] for the case £ > Vo.

5-2. Caleulate the probability current for the wave function (5-27) and show
that it is continuous at each houndary of the potential barrier. Construct a
solution of this problem which is an even function of (¢ — @/2) and draw & graph
of [¢|2 for B = (1/2)Vo. What is the amplitude of ¥ at & = &/2? Study the
dependence of [§(a/2}|2/ ¥ (0)|? on B. :

5-3. Derive relations analogous fo (5-31) and (5-33) for the quantity |R|?
as a function of E, and prove that |R|2 -+ [T|* = 1.

54, Consider a step potential barrier, as shown in Fig. 5-27. Calculate
the transmission coefficient |72 and the reflection coefficient, | R|? as functions of
the parameter d. Whaf values of d give maximum and minimum transmission?

5-5, Carry out the details of the calculation of ¢ for a particle of positive
total energy in the potential well (5-34) and draw a graph of the transmission
coefficient as a function of E.
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PROBLEMS
V=uw
V=T,
E = 3V
V = 2VO
V=¥,
1
V=0 ! - V=90
d ’ 0 a
Fra. 5-27. The step potential of Fic. 5-28. The potential well of
Problem 5-4. Problem 5-6.
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(c)

Fig. 5-29.

(d)

Potential energy curves for Problem 5-10.
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